查字典网

      铌( niobium),一种化学元素。化学符号Nb,原子序数41,原子量92.90638,属周期系ⅤB族。1801年英国C.哈切特从铌铁矿中分离出一种新元素的氧化物,并命名该元素为columbium(中译名钶)。铌能吸收气体,用作除气剂,也是一种良好的超导体。 铌能吸收气体,用作除气剂,也是一种良好的超导体。 铌能吸收气体,用作除气剂,也是一种良好的超导体。

目录
1、简介
2、发现
3、综合性质
4、化学性质
5、制取
6、铌和钽
7、用途

康熙字典

◎ 康熙字典解释
【戌集上】【金字部】 鈮; 康熙笔画:13; 页码:页1328第06(点击查看原图)
      【玉篇】與檷同。絡絲柎也。詳木部檷字註。

      化学元素解释:

简介

      铌 niobium一种化学元素。化学符号Nb,原子序数41,原子量2.90638,属周期系ⅤB族。1801年英国C.哈切特从铌铁矿中分离出一种新元素的氧化物,并命名该元素为columbium(中译名钶)。1802年瑞典A.G.厄克贝里在钽铁矿中发现另一种新元素 tantalum。由于这两种元素性质上非常相似,不少人认为它们是同一种元素。1844年德意志H.罗泽详细研究了许多铌铁矿和钽铁矿,分离出两种元素,才澄清了事实真相。铌在地壳中的含量为0.002%,主要矿物有铌铁矿〔(Fe,Mn)(Nb,Ta)2Ob〕、烧绿石〔(Ca,Na)2(Nb,Ta,Ti)2O6(OH,F)〕和黑稀金矿、褐钇铌矿、钽铁矿、钛铌钙铈矿。铌是灰白色金属,熔点2468℃,沸点4742℃,密度8.57克/厘米3 。室温下铌在空气中稳定,在氧气中红热时也不被完全氧化,高温下与硫、氮 、碳直接化合 ,能与钛 、锆、铪、钨形成合金。不与无机酸或碱作用,也不溶于王水,但可溶于氢氟酸。铌的氧化态为-1、+ 2、+3、+4和+5,其中以+5价化合物最稳定。

发现

      1801年,英国化学家查理斯·哈契特(Charles Hatchett)在一种称为烧绿石(pyrochlore)的矿物中发现了铌,由于铌和钽非常相似,起初他还曾将两者混淆,他将这种物质暂命名为“钶”。1809年,另一位英国化学家威廉·海德·伍拉斯顿(William Hyde Wollaston)错误的将“钽”与“钶”归为同一种物质。1846年,一位德国化学家亨烈赫·罗沙(Heinrich Rose)提出钽矿里应该还含有另一种元素,并命名为“铌”。到1864至65年间,一些科研成果表明其实“钶”与“铌”是同一种元素,在之后的一个世纪里,这两种称法是通用的。直至1949年,这种元素才被正式定名为“铌”。因为人们曾长期用铌铁矿的名字(Columbium,译作鈛、钶或鎶)来称呼铌,所以现在偶尔还会听到该名称。

综合性质

      元素符号:Nb

      元素英文名称:niobium

      元素类型:金属元素

      原子体积:10.87 (立方厘米/摩尔)

      元素在太阳中的含量: 0.004 (ppm)

      元素在海水中的含量:0.0000009 (ppm)

      地壳中含量:20(ppm)

      相对原子质量:92.90638

      原子序数:41

      所属周期:5

      所属族数:VB

      电子层排布:2-8-18-12-1

      晶体结构:晶胞为体心立方晶胞,每个晶胞含有2个金属原子。

      晶胞参数:a = 330.04 pm, b = 330.04 pm, c = 330.04 pm, α = 90°, β = 90°, γ = 90°

      氧化态:Main Nb+5 ,Other Nb-3, Nb-1, Nb+1, Nb+2, Nb+3, Nb+4

      莫氏硬度:6

      声音在其中的传播速率:3480(m/S)

      电离能 (kJ /mol)

      M - M+ 664

      M+ - M2+ 1382

      M2+ - M3+ 2416

      M3+ - M4+ 3695

      M4+ - M5+ 4877

      M5+ - M6+ 9899

      M6+ - M7+ 12100[1]

化学性质

      铌的化学性质在很多方面跟同族(第5族,即VB族)的前面的元素相似。高温下,铌会跟绝大多数非金属单质反应:室温即与氟单质反应,200 °C即与氯气和氢气反应,400 °C与氮气反应,产物通常是填隙式且不是整比化合物。铌置于空气中200 °C开始被氧化,却能够抵抗熔融碱金属和酸(包括王水、盐酸、硫酸、硝酸和磷酸等)的腐蚀。铌能被热的,浓的无机酸腐蚀,包括氢氟酸或氢氟酸/硝酸混合酸。尽管铌能显示出所有正常的氧化态(从+5到−1),其最稳定的价态为+5价。

      铌能够形成+5价氧化物五氧化二铌(Nb2O5),+4价的二氧化铌(NbO2)还有+3价的三氧化二铌(Nb2O3)和较为罕见的氧化态+2价的一氧化铌(NbO)。最稳定的氧化态为+5,五氧化物跟非整比的二氧化物是最常见的铌氧化物。铌的五氧化物主要用于生产电容器,光学玻璃,或作为制备铌的其他化合物的起始材料。制备这些化合物,我们可以将其五氧化二物溶解在碱性氢氧化物溶液中,或是将之与其他金属的氧化物共同熔融。例如制备铌酸锂(LiNbO3)、铌酸镧(LaNbO4)。对于铌酸锂的结构,铌酸根离子(NbO3−)不是作为单体存在,而是三角形扭曲的钙钛矿结构的一部分,而对于铌酸镧的结构则包含孤立的NbO4−离子。铌酸锂作为一种铁电物质,被广泛应用于手机和光调制器,以及声表面波器件的生产,属于ABO3结构类似钽酸锂和钽酸钡的铁电体。

      铌能够形成+5,+4,+3价卤化物(NbX5,NbX4和NbX3),也能生成多核配合物和非整比化合物。五氟化铌(NbF5)为白色固体,熔点79.0 °C;五氯化铌(NbCl5)是黄白色固体,熔点203.4 °C。两者都能发生水解反应,在高温条件下能够与过量的铌单质反应,生成黑色极易潮解的四氟化铌(NbF4)和四氯化铌(NbCl4)。铌的三卤化物能够通过氢气还原其五卤化物制得,而其二卤化物则不存在。高温下一氯化铌的光谱能够被检测到。铌的氟化物可用于分离铌和钽的混合物。五氯化铌在有机化学中被用作触发烯烃的Diels-Alder反应的Lewis酸。五氯化铌还能作为原料制备有机金属化合物二氯二茂铌((C5H5)2NbCl2),可作为制备其它有机铌化合物的起始原料。其他二元化合物如氮化铌(NbN)在低温条件下显示出超导性,现已用于红外探测器;碳化铌则是一种硬度很大的,熔点很高的陶瓷材料,在制造商品上用于制造切割工具的一部分。锗化铌(Nb3Ge),锡化铌(Nb3Sn)还有铌钛合金,都被用作超导磁体的超导导线。其它的化合物有硫化铌和其它几种铌的填隙型化合物,如铌跟硅的填隙型化合物等,此处不再细说。

制取

      金属铌可用电解熔融的七氟铌酸钾制取,也可用金属钠还原七氟铌酸钾或金属铝还原五氧化二铌制取。纯铌在电子管中用于除去残留气体,钢中掺铌能提高钢在高温时的抗氧化性,改善钢的焊接性能。铌还用于制造高温金属陶瓷。

铌和钽

      把它们放到一起来介绍是有道理的,因为它们在元素周期表里是同族,物理、化学性质很相似,而且常常“形影不离”,在自然界伴生在一起,真称得上是一对惟妙惟肖的“孪生兄弟”。事实上,当人们在十九世纪初首次发现铌和钽的时候,还以为它们是同一种元素呢。以后大约过了四十二年,人们用化学方法第一次把它们分开,这才弄清楚它们原来是两种不同的金属。铌、钽和钨、钼一样都是稀有高熔点金属,它们的性质和用途也有不少相似之处。

      既然被称为稀有高熔点金属,铌、钽最主要的特点当然是耐热。它们的熔点分别高达摄氏二千四百多度和将近三千度,不要说一般的火势烧不化它们,就是炼钢炉里烈焰翻腾的火海也奈何它们不得。难怪在一些高温高热的郡门里,特别是制造一千六百度以上的真空加热炉,钽金属是十分适合的材料。

      一种金属的优良性能往往可以“移植”到另一种金属里。现在的情况也是这样,用铌作合金元素添加到钢里,能使钢的高温强度增加,加工性能改善。铌、钽与钨、钼、钒、镍、钴等一系列金属合作,得到的“热强合金”,可以用作超音速喷气式飞机和火箭、导弹等的结构材料。目前科学家们在研制新型的高温结构材料时,已开始把注意力转向铌、钽;许多高温、高强度合金都有这一对孪生兄弟参加。

      铌、钽本身很顽强,它们的碳化物更有能耐,这个特点与钨、钼也毫无二致。用铌和钽的碳化物作基体制成的硬质合金,有很高的强度和抗压、耐磨、耐蚀本领。在所有的硬质化合物中,碳化钽的硬度是最高的。用碳化袒硬质合金制成的刀具,能抗得住三千八百度以下的高温,硬度可以与金刚石匹敌,使用寿命比碳化钨更长。

用途

      铌 - 超低温下创奇迹

      人们很早以前就发现,当温度降低到接近绝对零度的时俟,有些物质的化学性质会发生突然的改变,变成一种几乎没有电阻的“超导体”。物质开始具有这种奇异的“超导”性能的温度叫临界温度。不用说,各种物质的临界温度是不一样的。

      要知道,超低温度是很不容易得到的,人们为此而付出了巨大的代价;越向绝对零度接近,需要付出的代价越大。所以我们对超导物质的要求,当然是临界温度越高越好。

      具有超导性能的元素不少,铌是其中临界温度最高的一种。而用铌制造的合金,临界温度高达绝对温度十八点五到二十一度,是目前最重要的超导材料。

      人们曾经做过这样一个实验:把一个冷到超导状态的金属铌环,通上电流然后再断开电流,然后,把整套仪器封闭起来,保持低温。过了两年半后,人们把仪器打开,发现铌环里的电流仍在流动,而且电流强弱跟刚通电时几乎完全相同!

      从这个实验可以看出,超导材料几乎不会损失电流。如果使用超导电缆输电,因为它没有电阻,电流通过时不会有能量损耗,所以输电效率将大大提高。

      有人设计了一种高速磁悬浮列车,它的车轮部位安装有超导磁体,使整个列车可以浮起在轨道上约十厘米。这样一来,列车和轨道之间就不会再有摩擦,减少了前进的阻力。一列乘载百人的磁悬浮列车,只消一百马力的推动力,就能使速度达到每小时五百公里以上。

      用一条长达二十公里的铌锡带,缠绕在直径为一点五米的轮缘上,绕组能够产生强烈而稳定的磁场,足以举起一百二十二公斤的重物,并使它悬浮在磁场空间里。如果把这种磁场用到热核聚变反应中,把强大的热核聚变反应控制起来,那就有可能给我们提供大量的几乎是无穷无尽的廉价电力。

      不久前,人们曾用铌钛超导材料制成了一台直流发电机。它的优点很多,比如说体积小,重量轻,成本低,与同样大小的普通发电机相比,它发的电量要大一百倍。

      铌 - 医疗用途

      钽在外科医疗上也占有重要地位,它不仅可以用来制造医疗器械,而且是很好的“生物适应性材料”。

      比如说吧,用钽片可以弥补头盖骨的损伤,钽丝可以用来缝合神经和肌腱,钽条可以代替折断了的骨头和关节,钽丝制成的钽纱或钽网,可以用来补偿肌肉组织……

      在医院里,还会有这样的情况:用钽条代替人体里折断了的骨头之后,经过一段时间,肌肉居然会在钽条上生长起来,就像在真正的骨头上生长一样。怪不得人们把钽叫作“亲生物金属”哩。

      为什么钽在外科手术中能有这样奇特的作用呢?

      关键还是因为它有极好的抗蚀性,不会与人体里的各种液体物质发生作用,并且几乎完全不损伤生物的机体组织,对于任何杀菌方法都能适应,所以可以同有机组织长期结合而无害地留在人体里。

      除了在外科手术中有这样好的用途外,利用铌、钽的仆学稳定性,还可以用它们来制造电解电容器、整流器等等。

      特别是钽,目前约有一半以上用来生产大容量,小体积,高稳定性的固体电解电容器。全世界每年都要生产几亿只。

      钽电解电容器没有“辜负”人们的厚望,它具有很多其他材料比不上的优点。

      它比跟它一般大小的其他电容器“兄弟”的电容量大五倍,而且非常可靠、耐震,工作温度范围大,使用寿命长,现在已经大量地用在电子计算机、雷达、导弹、超音速飞机、自动控制装置以及彩色电视、立体电视等的电子线路中。